. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . .

February 3rd ikenbot:

Crater Fan
A fan-shaped deposit decorates the floor of a Martian impact crater in a new picture from NASA’s Mars Reconnaissance Orbiter.
The ancient fan looks similar to modern deltas on Earth, which form when water in a channel flows into a larger body of water, as with the Nile Delta in Egypt. As the water spreads out, it moves slower and drops any sediment it’s carrying, creating the fan-like structure.
February 2nd Globular Cluster NGC 1846 in the Large Magellanic Cloud
February 2nd M33 NGC 598 The Triangulum Galaxy (luminance)
February 2nd Horsehead Nebula (B33) LRGB+HA 
February 1st M42 The Great Nebula In Orion (LRGB) 
February 1st
February 1st spacingouttv:

Glowing Nebula Looks Like Giant Human Face in New Photo
January 17th What has happened to Saturn’s moon Iapetus? Vast sections of this strange world are dark as coal, while others are as bright as ice. The composition of the dark material is unknown, but infrared spectraindicate that it possibly contains some dark form of carbon. Iapetus also has an unusual equatorial ridge that makes it appear like a walnut. To help better understand this seemingly painted moon, NASA directed the robotic Cassini spacecraft orbiting Saturn to swoop within 2,000 kilometers in 2007. Pictured above, from about 75,000 kilometers out, Cassini’s trajectory allowed unprecedented imaging of the hemisphere of Iapetus that isalways trailing. A huge impact crater seen in the south spans a tremendous 450 kilometers and appears superposed on an older crater of similar size. The dark material is seen increasingly coating the easternmost part ofIapetus, darkening craters and highlands alike. Close inspection indicates that the dark coating typically faces the moon’s equator and is less than a meter thick. A leading hypothesis is that the dark material is mostly dirt leftover when relatively warm but dirty ice sublimates. An initial coating of dark material may have been effectively painted on by the accretion of meteor-liberated debris from other moons. This and other images from Cassini’s Iapetus flyby are being studied for even greater clues.
January 17th Cosmic dust clouds ripple across this infrared portrait of our Milky Way’s satellite galaxy, the Large Magellanic Cloud. In fact, the remarkable composite image from the Herschel Space Observatory and theSpitzer Space Telescope show that dust clouds fill this neighboring dwarf galaxy, much like dust along the plane of the Milky Way itself. The dust temperatures tend to trace star forming activity. Spitzer data in blue hues indicate warm dust heated by young stars. Herschel’s instruments contributed the image data shown in red and green, revealing dust emission from cooler and intermediate regions where star formation is just beginning or has stopped. Dominated by dust emission, the Large Magellanic Cloud’s infrared appearance is different from views in optical images. But this galaxy’s well-known Tarantula Nebula still stands out, easily seen here as the brightest region to the left of center. A mere 160,000 light-years distant, the Large Cloud of Magellan is about 30,000 light-years across.
January 16th This pretty planetary nebula, cataloged as NGC 6369, was discovered by 18th century astronomer William Herschel as he used a telescope to explore the medicinal constellation Ophiucus. Round and planet-shaped, the nebula is also relatively faint and has acquired the popular moniker of Little Ghost Nebula. Planetary nebulae in general are not at all related to planets, but instead are created at the end of a sun-like star’s life as its outer layers expand into space while the star’s core shrinks to become a white dwarf. The transformed white dwarf star, seen near the center, radiates strongly at ultraviolet wavelengths and powers the expanding nebula’s glow. Surprisingly complex details and structures of NGC 6369 are revealed in this tantalizing image composed from Hubble Space Telescope data. The nebula’s main ring structure is about a light-year across and the glow from ionized oxygen, hydrogen, and nitrogen atoms are colored blue, green, and red respectively. Over 2,000 light-years away, the Little Ghost Nebula offers a glimpse of the fate of our Sun, which could produce its own planetary nebula only about 5 billion years from now.
January 6th Planetary Nebula PN G054.2-03.4 • The Necklace by Hubble Heritage on Flickr.The “Necklace Nebula,” also called PN G054.2-03.4, is the exploded aftermath of a giant star that came too close to its Sun-like binary companion. The two stars that produced the Necklace Nebula live in a relatively small orbit about each other. They have a period of 1.2 days and a separation on the order of 5 times the radius of the Sun.
Evidence for the existence of the two-body system arises from the nebula’s appearance of a half-light-year-wide equatorial ring of dense material near the inner portion of the nebula. The expanding elliptical ring is composed of bright, dense knots of glowing hydrogen and oxygen gas. Each knot also dons a small tail pointing away from the central star. The clumpy appearance of the ring may have been caused by density fluctuations in the shared material of the binary stars prior to the explosion, or possibly by magnetic field lines present in the giant star as it began to expand and shed off its outer layers.
A fast, collimated outflow of nitrogen gas from the binary system has formed faint lobes and polar caps extending in the direction perpendicular to the ring. Edge to edge, the nebula is nearly 9 light-years long, over twice the distance between our Sun and our nearest stellar companion, Proxima Centauri.heritage.stsci.edu/2011/24/
STScI-PRC11-24b
January 6th 

Active Galaxy Centaurus A
Resembling looming rain clouds on a stormy day, dark lanes of dust crisscross the giant elliptical galaxy Centaurus A. 

Hubble’s panchromatic vision, stretching from ultraviolet through near-infrared wavelengths, reveals the vibrant glow of young, blue star clusters and a glimpse into regions normally obscured by the dust. 

The warped shape of Centaurus A’s disk of gas and dust is evidence for a past collision and merger with another galaxy. The resulting shockwaves cause hydrogen gas clouds to compress, triggering a firestorm of new star formation. These are visible in the red patches in this Hubble close-up. 

At a distance of just over 11 million light-years, Centaurus A contains the closest active galactic nucleus to Earth. The center is home for a supermassive black hole that ejects jets of high-speed gas into space, but neither the supermassive black hole or the jets are visible in this image. 

This image was taken in July 2010 with Hubble’s Wide Field Camera 3. 

Image Credit: NASA, ESA, and the Hubble Heritage (STScI/AURA)-ESA/Hubble Collaboration
January 6th Given the incredible amounts of energy in a supernova explosion – as much as the sun creates during its entire lifetime – another erroneous doomsday theory is that such an explosion could happen in 2012 and harm life on Earth. However, given the vastness of space and the long times between supernovae, astronomers can say with certainty that there is no threatening star close enough to hurt Earth.Astronomers estimate that, on average, about one or two supernovae explode each century in our galaxy. But for Earth’s ozone layer to experience damage from a supernova, the blast must occur less than 50 light-years away. All of the nearby stars capable of going supernova are much farther than this.Any planet with life on it near a star that goes supernova would indeed experience problems. X- and gamma-ray radiation from the supernova could damage the ozone layer, which protects us from harmful ultraviolet light in the sun’s rays. The less ozone there is, the more UV light reaches the surface. At some wavelengths, just a 10 percent increase in ground-level UV can be lethal to some organisms, including phytoplankton near the ocean surface. Because these organisms form the basis of oxygen production on Earth and the marine food chain, any significant disruption to them could cascade into a planet-wide problem.Another explosive event, called a gamma-ray burst (GRB), is often associated with supernovae. When a massive star collapses on itself — or, less frequently, when two compact neutron stars collide — the result is the birth of a black hole. As matter falls toward a nascent black hole, some of it becomes accelerated into a particle jet so powerful that it can drill its way completely through the star before the star’s outermost layers even have begun to collapse. If one of the jets happens to be directed toward Earth, orbiting satellites detect a burst of highly energetic gamma rays somewhere in the sky. These bursts occur almost daily and are so powerful that they can be seen across billions of light-years.
January 6th Sharpless 2-106, Sh2-106 or S106 for short, lies nearly 2,000 light-years from us. The nebula measures several light-years in length. It appears in a relatively isolated region of the Milky Way galaxy.A massive, young star, IRS 4 (Infrared Source 4), is responsible for the furious activity we see in the nebula. Twin lobes of super-hot gas, glowing blue in this image, stretch outward from the central star. This hot gas creates the “wings” of our angel.A ring of dust and gas orbiting the star acts like a belt, cinching the expanding nebula into an “hourglass” shape. Hubble’s sharp resolution reveals ripples and ridges in the gas as it interacts with the cooler interstellar medium.Dusky red veins surround the blue emission from the nebula. The faint light emanating from the central star reflects off of tiny dust particles. This illuminates the environment around the star, showing darker filaments of dust winding beneath the blue lobes.Detailed studies of the nebula have also uncovered several hundred brown dwarfs. At purely infrared wavelengths, more than 600 of these sub-stellar objects appear. These “failed” stars weigh less than a tenth of our Sun. Because of their low mass, they cannot produce energy through nuclear fusion like our Sun does. They encompass the nebula in a small cluster.The Hubble images were taken in February 2011 with the Wide Field Camera 3. Visible narrow-band filters that isolate the hydrogen gas were combined with near-infrared filters that show structure in the cooler gas and dust.
The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA’s Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute (STScI) conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy, Inc., in Washington, D.C.